Publications
Journal Articles
Peer-Reviewed
Published
2023
10.1038/s41746-023-00905-9
Md Saiful Islam, Wasifur Rahman, Abdelrahman Abdelkader, Sangwu Lee, Phillip T. Yang, Jennifer Lynn Purks, Jamie Lynn Adams, Ruth B. Schneider, Earl Ray Dorsey, Ehsan Hoque
Nature npj Digital Medicine 2023
Abstract
We present an artificial intelligence (AI) system to remotely assess the motor performance of individuals with Parkinson’s disease (PD). In our study, 250 global participants performed a standardized motor task involving finger-tapping in front of a webcam. To establish the severity of Parkinsonian symptoms based on the finger-tapping task, three expert neurologists independently rated the recorded videos on a scale of 0–4, following the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). The inter-rater reliability was excellent, with an intra-class correlation coefficient (ICC) of 0.88. We developed computer algorithms to obtain objective measurements that align with the MDS-UPDRS guideline and are strongly correlated with the neurologists’ ratings. Our machine learning model trained on these measures outperformed two MDS-UPDRS certified raters, with a mean absolute error (MAE) of 0.58 points compared to the raters’ average MAE of 0.83 points. However, the model performed slightly worse than the expert neurologists (0.53 MAE). The methodology can be replicated for similar motor tasks, providing the possibility of evaluating individuals with PD and other movement disorders remotely, objectively, and in areas with limited access to neurological care.
Published
2023
ACM
10.1145/3631430
Wasifur Rahman, Abdelrahman Abdelkader, Sangwu Lee, Phillip T. Yang, Md Saiful Islam, Tariq Adnan, Masum Hasan, Ellen Wagner, Sooyong Park, Ray Dorsey, Cathe Schwartz, Karen Jaffe, Ehsan Hoque
IMWUT 2023 /UbiComp
Abstract
We present a user-centric validation of a teleneurology platform, assessing its effectiveness in conveying screening information, facilitating user queries, and offering resources to enhance user empowerment. This validation process is implemented in the setting of Parkinson's disease (PD), in collaboration with a neurology department of a major medical center in the USA. Our intention is that with this platform, anyone globally with a webcam and microphone-equipped computer can carry out a series of speech, motor, and facial mimicry tasks. Our validation method demonstrates to users a mock PD risk assessment and provides access to relevant resources, including a chatbot driven by GPT, locations of local neurologists, and actionable and scientifically-backed PD prevention and management recommendations. We share findings from 91 participants (48 with PD, 43 without) aimed at evaluating the user experience and collecting feedback. Our framework was rated positively by 80.85% (standard deviation ± 8.92%) of the participants, and it achieved an above-average 70.42 (standard deviation ± 13.85) System-Usability-Scale (SUS) score. We also conducted a thematic analysis of open-ended feedback to further inform our future work. When given the option to ask any questions to the chatbot, participants typically asked for information about neurologists, screening results, and the community support group. We also provide a roadmap of how the knowledge generated in this paper can be generalized to screening frameworks for other diseases through designing appropriate recording environments, appropriate tasks, and tailored user-interfaces.
Published
2023
ACM
110.1145/3580845
Wasifur Rahman, Masum Hasan, Md Saiful Islam, Titilayo Olubajo, Jeet Thaker, Abdelrahman Abdelkader, Phillip Yang, Henry Paulson, Gulin Oz, Alexandra Durr, Thomas Klockgether, Tetsuo Ashizawa, Readisca Investigators, Ehsan Hoque
IMWUT/UbiComp 2023
Abstract
Many patients with neurological disorders, such as Ataxia, do not have easy access to neurologists, -especially those living in remote localities and developing/underdeveloped countries. Ataxia is a degenerative disease of the nervous system that surfaces as difficulty with motor control, such as walking imbalance. Previous studies have attempted automatic diagnosis of Ataxia with the help of wearable biomarkers, Kinect, and other sensors. These sensors, while accurate, do not scale efficiently well to naturalistic deployment settings. In this study, we propose a method for identifying ataxic symptoms by analyzing videos of participants walking down a hallway, captured with a standard monocular camera. In a collaboration with 11 medical sites located in 8 different states across the United States, we collected a dataset of 155 videos along with their severity rating from 89 participants (24 controls and 65 diagnosed with or are pre-manifest spinocerebellar ataxias). The participants performed the gait task of the Scale for the Assessment and Rating of Ataxia (SARA). We develop a computer vision pipeline to detect, track, and separate the participants from their surroundings and construct several features from their body pose coordinates to capture gait characteristics such as step width, step length, swing, stability, speed, etc. Our system is able to identify and track a patient in complex scenarios. For example, if there are multiple people present in the video or an interruption from a passerby. Our Ataxia risk-prediction model achieves 83.06% accuracy and an 80.23% F1 score. Similarly, our Ataxia severity-assessment model achieves a mean absolute error (MAE) score of 0.6225 and a Pearson's correlation coefficient score of 0.7268. Our model competitively performed when evaluated on data from medical sites not used during training. Through feature importance analysis, we found that our models associate wider steps, decreased walking speed, and increased instability with greater Ataxia severity, which is consistent with previously established clinical knowledge. Furthermore, we are releasing the models and the body-pose coordinate dataset to the research community - the largest dataset on ataxic gait (to our knowledge). Our models could contribute to improving health access by enabling remote Ataxia assessment in non-clinical settings without requiring any sensors or special cameras. Our dataset will help the computer science community to analyze different characteristics of Ataxia and to develop better algorithms for diagnosing other movement disorders.
Conference Publications
Peer-Reviewed
Published
2023
Md Saiful Islam, Sangwu Lee, Abelrahman Abdelkader, Sooyoung Park, Eshan Hoque
ACII Demo Track
Abstract
We present a web-based framework to screen for Parkinson’s disease (PD) by allowing users to perform neurological tests in their homes. Our web framework guides the users to complete three tasks involving speech, facial expression, and finger movements. The task videos are analyzed to classify whether the users show signs of PD. We present the results in an easy-to-understand manner, along with personalized resources to further access to treatment and care. Our framework is accessible by any major web browser, improving global access to neurological care.
bibtex
Abstracts
2022
WILEY
P Yang, M Islam, A Abdelkader, W Rahman, M Pawlik, S Jensen-Roberts, E Waddell, T Myers, J Soto, E Hartman, E Nnadika, R Wilson, K Lizarraga, C Tarolli, R Schneider, E Dorsey, J Adams, E Hoque
MOVEMENT DISORDERS